Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172220, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588733

RESUMO

The microbial carbon (C) flux in the ocean is a key functional process governed by the excretion of organic carbon by phytoplankton (EOC) and heterotrophic bacterial carbon demand (BCD). Ultraviolet radiation (UVR) levels in upper mixed layers and increasing atmospheric dust deposition from arid regions may alter the degree of coupling in the phytoplankton-bacteria relationship (measured as BCD:EOC ratio) with consequences for the C-flux through these compartments in marine oligotrophic ecosystem. Firstly, we performed a field study across the south-western (SW) Mediterranean Sea to assess the degree of coupling (BCD:EOC) and how it may be related to metabolic balance (total primary production: community respiration; PPT:CR). Secondly, we conducted a microcosm experiment in two contrasting areas (heterotrophic nearshore and autotrophic open sea) to test the impact of UVR and dust interaction on microbial C flux. In the field study, we found that BCD was not satisfied by EOC (i.e., BCD:EOC >1; uncoupled phytoplankton-bacteria relationship). BCD:EOC ratio was negatively related to PPT:CR ratio across the SW Mediterranean Sea. A spatial pattern emerged, i.e. in autotrophic open sea stations uncoupling was less severe (BCD:EOC ranged 1-2), whereas heterotrophic nearshore stations uncoupling was more severe (BCD:EOC > 2). In the experimental study, in the seawater both enriched with dust and under UVR, BCD:EOC ratio decreased by stimulating autotrophic processes (particulate primary production (PPP) and EOC) in the heterotrophic nearshore area, whereas BCD:EOC increased by stimulating heterotrophic processes [heterotrophic bacterial production (HBP), bacterial growth efficiency (BGE), bacterial respiration (BR)] in the autotrophic open sea. Our results show that this spatial pattern could be reversed under future UVR × Dust scenario. Overall, the impact of greater dust deposition and higher UVR levels will alter the phytoplankton-bacteria C-flux with consequences for the productivity of both communities, their standing stocks, and ultimately, the ecosystem's metabolic balance at the sea surface.


Assuntos
Bactérias , Poeira , Fitoplâncton , Raios Ultravioleta , Fitoplâncton/efeitos da radiação , Mar Mediterrâneo , Poeira/análise , Bactérias/metabolismo , Água do Mar/microbiologia , Ciclo do Carbono , África do Norte , Ecossistema
2.
Front Microbiol ; 14: 1250575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029132

RESUMO

Marine environments wherein long-term microbial oxygen consumption exceeds oxygen replenishment can be associated with oxygen minimum zones (OMZ). The Bay of Bengal OMZ (BOB-OMZ) is one of the most intense OMZs globally. To assess the contribution of bacterial oxygen consumption to oxygen loss in BOB-OMZ, we measured bacterial production (BP), temperature, salinity, and dissolved oxygen (DO) in the whole water column. We then compared the estimated bacterial oxygen demand (BOD) with diapycnal oxygen supply (DOS) at depths of 50-200 m in the southern BOB in January 2020. The average BP was 3.53 ± 3.15 µmol C m-3 h-1 in the upper 200 m of four stations, which was lower than those reported in other tropical waters. The vertical distribution of BP differed between the open ocean and nearshore areas. In the open ocean, temperature and DO were the most important predictors for BP in the whole water column. In the nearshore areas, when DO increased sharply from the suboxic state, extremely high BP occurred at 200 m. The average estimated BOD/DOS could reach up to 153% at depths of 50-200 m, indicating advection and anticyclonic eddies probably are important DO replenishment pathways in the BOB.

3.
Biomolecules ; 13(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37892190

RESUMO

Although single-chain variable fragment (scFv) is recognized as a highly versatile scaffold of recombinant antibody fragment molecules, its overexpression in Escherichia coli often leads to the formation of inclusion bodies. To address this issue, we devised and tested four different constructs, named v21, v22, v23 and v24, for producing anti-human epidermal growth factor receptor 2 (HER2) scFv. Among them, the v24 construct obtained from N-terminal fusion of maltose-binding protein (MBP) and subsequent tobacco etch virus protease (TEV) was identified as the most efficient construct for the production of anti-HER2 scFv. Aided by an MBP tag, high-yield soluble expression was ensured and soluble scFv was liberated in cells via autonomous proteolytic cleavage by endogenously expressed TEV. The isolated scFv containing a C-terminal hexahistidine tag was purified through a one-step purification via nickel-affinity chromatography. The purified scFv exhibited a strong (nanomolar Kd) affinity to HER2 both in vitro and in cells. Structural and functional stabilities of the scFv during storage for more than one month were also assured. Given the great utility of anti-HER2 scFv as a basic platform for developing therapeutic and diagnostic agents for cancers, the v24 construct and methods presented in this study are expected to provide a better manufacturing system for producing anti-HER2 scFv with various industrial applications.


Assuntos
Escherichia coli , Anticorpos de Cadeia Única , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/química , Cromatografia de Afinidade , Proteínas Ligantes de Maltose/genética
4.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298215

RESUMO

Double-stranded RNA (dsRNA) can trigger RNA interference (RNAi) and lead to directed silencing of specific genes. This natural defense mechanism and RNA-based products have been explored for their potential as a sustainable and ecofriendly alternative for pest control of species of agricultural importance and disease vectors. Yet, further research, development of new products and possible applications require a cost-efficient production of dsRNA. In vivo transcription of dsRNA in bacterial cells has been widely used as a versatile and inducible system for production of dsRNA combined with a purification step required to extract the dsRNA. Here, we optimized an acidic phenol-based protocol for extraction of bacterially produced dsRNA at low cost and good yield. In this protocol, bacterial cells are efficiently lysed, with no viable bacterial cells present in the downstream steps of the purification. Furthermore, we performed a comparative dsRNA quality and yield assessment of our optimized protocol and other protocols available in the literature and confirmed the cost-efficiency of our optimized protocol by comparing the cost of extraction and yields of each extraction method.


Assuntos
Controle de Pragas , RNA de Cadeia Dupla , RNA de Cadeia Dupla/genética , Interferência de RNA , Agricultura
5.
Microb Ecol ; 86(2): 810-824, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36574041

RESUMO

It is widely accepted that in many aquatic ecosystems bacterioplankton is dependent on and regulated by organic carbon supplied by phytoplankton, leading to coupled algae-bacteria relationship. In this study, an in-depth analysis of this relationship has been carried out by combining two approaches: (i) a correlation analyses between heterotrophic bacterial production (BP) vs. primary production (PP) or algal excretion of organic carbon (EOC), (ii) the balance between bacterial carbon demands (BCD) and the supply of C as EOC, measured as BCD:EOC ratio. During the study period (2013-2016), the algae-bacteria relationship was constantly changing from a coupling in 2013, uncoupling in 2014 and 2015, and an incipient return to coupling (in 2016). Our results show that top-down control (bacterivory) by algal mixotrophy acts as a decoupling force since it provides a fresh C source different to algal EOC to satisfy bacterial carbon demands. Notably, a relationship between the BCD:EOC ratio and the ecosystem metabolic balance (Primary production (PP): respiration (R)) was found, suggesting that PP:R may be a good predictor of the algae-bacteria coupling. This analysis, including the comparison between basal and potential ecosystem metabolic balance, can be a tool to improve knowledge on the interaction between both biotics compartments, which the traditional analyses on coupling may not capture.


Assuntos
Ecossistema , Fitoplâncton , Fitoplâncton/metabolismo , Bactérias/metabolismo , Carbono/metabolismo
6.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469206

RESUMO

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.

7.
Braz. j. biol ; 83: e250550, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345536

RESUMO

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.


Assuntos
Benzaldeídos/metabolismo , Aromatizantes/metabolismo , Bacillus subtilis/metabolismo , Microbiologia Industrial , Pseudomonas fluorescens/metabolismo , Enterococcus faecium/metabolismo , Meios de Cultura , Alcaligenes faecalis/metabolismo , Fermentação
8.
Environ Pollut ; 315: 120463, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36272613

RESUMO

We measured phytoplankton primary production and heterotrophic bacterial activities on microplastics and seawater in the Northwestern Mediterranean Sea during two 3-month spring periods over 2 consecutive years. Microorganisms growing on a 5 mm diameter low density polyethylene films (LDPE; 200 µm thick) faced two contrasting conditions depending on the year. Spring 2018 was characterized by consistent nutrient inputs and bloom development. In spring 2019, nutrient inputs and bloom were low. For the first time, we observed a clear coupling between primary production and heterotrophic prokaryote production on microplastics during both years, but with different intensity between years that reflected the crucial role of the trophic environmental conditions (nutrient supply) in shaping microbial activities on plastics. We found that high primary production on plastics could support the whole (net autotrophy) or the majority of the bacterial carbon demand needed for heterotrophic activities, supplemented by other carbon sources if surrounding waters are highly productive. We propose that microbial activity on plastics influences the microbial community in the surrounding seawater, especially when the environmental conditions are less favorable. An illustrative image of the role of plastics in the environment could be that of an inverter in an electrical circuit that mitigates both positive and negative variations. Our results highlight the potential role of the plastisphere in shaping biogeochemical cycles in the context of increasing amounts of plastic particles in the marine environment.


Assuntos
Microplásticos , Plásticos , Processos Heterotróficos , Água do Mar/química , Biofilmes , Bactérias , Polietileno , Processos Autotróficos , Carbono
9.
Sci Total Environ ; 841: 156510, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700777

RESUMO

Climate change is projected to cause brownification of some coastal seas due to increased runoff of terrestrially derived organic matter. We carried out a mesocosm experiment (15 d) to test the effect of this on the planktonic ecosystem expecting reduced primary production and shifts in the phytoplankton community composition. The experiment was set up in 2.2 m3 mesocosm bags using four treatments, each with three replicates: control (Contr) without any manipulation, organic carbon additive HuminFeed (Hum; 2 mg L-1), inorganic nutrients (Nutr; 5.7 µM NH4 and 0.65 µM PO4), and combined Nutr and Hum (Nutr + Hum) additions. Measured variables included organic and inorganic nutrient pools, chlorophyll a (Chla), primary and bacterial production and particle counts by flow cytometry. The bags with added inorganic nutrients developed a phytoplankton bloom that depleted inorganic N at day 6, followed by a rapid decline in Chla. Brownification did not reduce primary production at the tested concentration. Bacterial production was lowest in the Contr, but similar in the three treatments receiving additions likely due to increased carbon available for heterotrophic bacteria. Picoeukaryotes clearly benefited by brownification after inorganic N depletion, which could be due to more effective nutrient recycling, nutrient affinity, light absorption, or alternatively lower grazing pressure. In conclusion, brownification shifted the phytoplankton community composition towards smaller species with potential effects on carbon fluxes, such as sinking rates and export to the sea floor.


Assuntos
Ecossistema , Fitoplâncton , Bactérias , Carbono , Clorofila A , Processos Heterotróficos
10.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682710

RESUMO

Since it is known that hyaluronic acid contributes to soft tissue growth, elasticity, and scar reduction, different strategies of producing HA have been explored in order to satisfy the current demand of HA in pharmaceutical products and formulations. The current interest deals with production via bacterial and yeast fermentation and extraction from animal sources; however, the main challenge is the right extraction technique and strategy since the original sources (e.g., fermentation broth) represent a complex system containing a number of components and solutes, which complicates the achievement of high extraction rates and purity. This review sheds light on the main pathways for the production of HA, advantages, and disadvantages, along with the current efforts in extracting and purifying this high-added-value molecule from different sources. Particular emphasis has been placed on specific case studies attempting production and successful recovery. For such works, full details are given together with their relevant outcomes.


Assuntos
Ácido Hialurônico , Animais , Fermentação , Ácido Hialurônico/metabolismo
11.
Lett Appl Microbiol ; 74(5): 671-683, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35032053

RESUMO

Microbially induced carbonate precipitation (MICP) is a process that hydrolysis urea by microbial urease to fill the pore spaces of soil with induced calcium carbonate (CaCO3 ) precipitates, which eventually results in improved or solidified soil. This research explored the possibility of using dairy manure pellets (DMP) and palm oil mill effluent (POME) as alternative nutrient sources for Sporosarcina pasteurii cultivation and CaCO3 bioprecipitation. Different concentrations (20-80 g l-1 ) of DMP and POME were used to propagate the cells of S. pasteurii under laboratory conditions. The measured CaCO3 contents for MICP soil specimens that were treated with bacterial cultures grown in DMP medium (60%, w/v) was 15·30 ± 0·04 g ml-1 and POME medium (40%, v/v) was 15·49 ± 0·05 g ml-1 after 21 days curing. The scanning electron microscopy showed that soil treated with DMP had rhombohedral structure-like crystals with smooth surfaces, whilst that of POME entailed ring-like cubical formation with rough surfaces Electron dispersive X-ray analysis was able to identify a high mass percentage of chemical element compositions (Ca, C and O), whilst spectrum from Fourier-transform infrared spectroscopy confirmed the vibration peak intensities for CaCO3 . Atomic force microscopy further showed clear topographical differences on the crystal surface structures that were formed around the MICP treated soil samples. These nutrient sources (DMP and POME) showed encouraging potential cultivation mediums to address high costs related to bacterial cultivation and biocementation treatment.


Assuntos
Biomineralização , Carbonato de Cálcio , Meios de Cultura/química , Esterco , Nutrientes , Óleo de Palmeira , Solo , Sporosarcina
12.
Mar Life Sci Technol ; 4(3): 414-427, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37073168

RESUMO

Accurate estimates of bacterial carbon metabolic rates are indispensable for understanding the regulation of carbon fluxes in aquatic environments. Here, changes in bacterial growth, production, and cell volume in both pre-filtered and unfiltered seawater during 24 h incubation were monitored. The methodological artifacts during Winkler bacterial respiration (BR) measurements in subtropical Hong Kong coastal waters were assessed. Bacterial abundance increased by 3- and 1.8-fold in the pre-filtered and unfiltered seawater after incubation, respectively. Bacterial production (BP) and cell volume also showed significant enhancement. Compared with the BR measurements obtained by the Winkler method, the instantaneous free-living BR measurements, after correction, decreased by ~ 70%. The time-integrated free-living BR and BP during 24 h incubation in the pre-filtered sample provided an improved estimate of bacterial growth efficiency, which increased by ~ 52% compared to the common estimations using the noncomparable measurements of integrated free-living BR and instantaneous total BP. The overestimation of BR also exaggerated the contribution of bacteria to community respiration, affecting the understanding on the metabolic state of the marine ecosystems. Furthermore, the BR estimates by the Winkler method may be more biased in environments with a higher bacterial growth rate and tightly coupled grazing mortality, as well as in those with higher nutrient concentrations. These results reveal obvious problems associated with the BR methodology and raise a warning for caution when comparing BP and BR, as well as when making estimations of carbon flow through the complex microbial networks in aquatic ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00133-2.

13.
Arch Microbiol ; 203(9): 5547-5559, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34432093

RESUMO

The aim of this paper was to determine the abundance and secondary production by bacteria inhabiting the surface microlayer and subsurface water in a specific water basin, i.e., polluted estuarine harbour channel. In a 3-year seasonal cycle, the total number of bacteria and their biomass were higher in the surface microlayer (SML) 7.57 × 108cells dm-3 and 15.86 µg C dm-3 than in the subsurface water (SSW) 4.25 × 108cells dm-3 and 9.11 µg C dm-3 of the studied channel. The opposite relationship was noted in the level of the secondary production (SML-37.16 µg C dm-3 h-1, SSW-60.26 µg C dm-3 h-1) in this water basin. According to the analysed microbiological parameters, the total number of bacteria and secondary production varied along the horizontal profile in the water of the studied channel. The total number of bacteria and their secondary production showed the seasonal variation as well.


Assuntos
Plâncton , Poluentes Químicos da Água , Bactérias/genética , Biomassa , Água , Poluentes Químicos da Água/análise
14.
Mar Pollut Bull ; 169: 112524, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34049069

RESUMO

The dissolved organic nutrient conditions and bacterial process rates at two tropical coastal sites in Peninsular Malaysia (Port Klang and Port Dickson) were initially studied in 2004-2005 period and later revisited in 2010-2011. We observed that dissolved organic nitrogen (DON) increased about two- and ten-fold at Port Klang and Port Dickson, respectively and resulted in a significant change in DOC:DON ratio (t ≥ 2.077, p < 0.05). Among the bacterial processes measured, bacterial respiration (BR) was lower in the 2010-2011 period at both stations (t ≥ 3.390, p < 0.01). BR also correlated to the DOC:DON ratio (R2 ≥ 0.259, p < 0.01). The increase in substrate quality enabled the bacteria to respire less in the dissolved organic matter degradation. As a result, the average bacterial growth efficiency increased slightly in the 2010-2011 period.


Assuntos
Fenômenos Fisiológicos Bacterianos , Eutrofização , Bactérias , Carbono/análise , Malásia , Nitrogênio/análise
15.
Sci Total Environ ; 782: 146402, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839660

RESUMO

Fjord systems in higher latitudes are unique coastal water ecosystems that facilitate the study of dissolved organic matter (DOM) dynamics from surface to deeper waters. The current work was undertaken in the Trondheim fjord characterized by North Atlantic waters, and compared DOM fractions from three depths - surface (3 m), intermediate (225 m) and deep (440 m) in four seasons, from late spring to winter in 2017. The high-resolution mass spectrometry data showed that DOM composition varies significantly in different seasons rather than in different depths in the fjord systems. The bacterial community composition was comparable except at spring surface and summer intermediate depths. Bacterial production was minimal below the euphotic layer, even with sufficient availability of inorganic nutrients. The bacterial production rate in the surface waters was about 7 times and over 50 times higher than that of the aphotic zone in the winter and the summer seasons, respectively. The surface heterotrophic microbial communities might have rapidly consumed the available labile DOM, with the production of more refractory DOM limiting bacterial production in aphotic layers. The greater number of CRAM-like formulas determined in the surface waters compared to other depths supports our hypothesis. The refractory DOM sequestered in the water column may either be exported into sediments attached to particulate matter and marine gels, or may escape into the atmosphere as carbon dioxide/monoxide during the photochemical oxidation pathways, suggesting that it is involved in climate change scenarios.

16.
Environ Pollut ; 283: 117088, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857882

RESUMO

Large amounts of anthropogenic East Asian (EA) particulate matters (PM), containing inorganic nutrients and organic matter, are deposited in the oligotrophic Northwest Pacific Ocean. However, the effects of such deposition on marine microbes remain unclear. In this study, the effect of EA PM deposition on marine bacteria was assessed by five on-board microcosm experiments, conducted in oligotrophic basins of the South China Sea. The addition of EA PM to the sampling water induced a clear shift in bacterial community composition from prevailing oligotrophs (i.e., SAR 11 clade, Prochlorococcus, AEGEAN-169 marine group) to less common copiotrophs (i.e., Alteromonas, Ruegeria, Flavobacteriaceae) and thus a slight increase in bacterial diversity. The shift to more active community composition, as well as stimulation of PM nutrients, resulted in a large increase in cell-specific and bulk bacterial production. In contrast, there were only minor changes in bacterial abundance, possibly due to increased top-down mortality. The EA PM also exhibited a stronge toxic effect on pico-cyanobacteria, leading to a significant decrease in their proportion. Moreover, the responses of bacterial metabolism and community composition exhibited significant relationships with the hydrographic condition of the locations. Stronger promotion effects of the EA PM on bacterial production and community shift from oligotrophs to copiotrophs was demonstrated at the more oligotrophic sites with lower chlorophyll a concentrations. These results suggest that PM deposition from polluted areas has the potential to alter the typical oligotrophic microbiomes and change the net metabolic balance of the bacterial community. These will then influence the dynamics of carbon flow in microbial food webs and biogeochemical cycles, especially with the trend of global warming and expansion of low-chlorophyll regions.


Assuntos
Material Particulado , Rhodobacteraceae , China , Clorofila A , Oceano Pacífico , Material Particulado/análise , Água do Mar
17.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33544820

RESUMO

The marine macroalgae Ulva sp. is considered an ecosystem engineer in rocky shores of temperate waters worldwide. Ulva sp. harbors a rich diversity of associated microbial epibionts, which are known to affect the algae's typical morphological development and 'health'. We examined the interaction between airborne microbes derived from atmospheric aerosols and Ulva ohnoi growth and physiological state. Specifically, we measured U. ohnoi growth rates and photosynthetic efficiency (Fv/Fm), alongside its microbial epibionts abundance, activity and diversity following dust (containing nutrients and airborne microorganisms) or UV-treated dust (only nutrients) amendments to filtered seawater. Parallel incubations with epibionts-free U. ohnoi (treated with antibiotics that removed the algae epibionts) were also tested to specifically examine if dust-borne microbes can replenish the epibiont community of U. ohnoi. We show that viable airborne microbes can restore U. ohnoi natural microbial epibionts communities, thereby keeping the seaweed alive and 'healthy'. These results suggest that microbes delivered through atmospheric aerosols can affect epiphyte biodiversity in marine flora, especially in areas subjected to high annual atmospheric dust deposition such as the Mediterranean Sea.


Assuntos
Alga Marinha , Ulva , Poeira , Ecossistema , Mar Mediterrâneo
18.
Front Microbiol ; 11: 543567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250862

RESUMO

Aquifers are important reservoirs for organic carbon. A fundamental understanding of the role of groundwater ecosystems in carbon cycling, however, is still missing. Using sediment flow-through microcosms, long-term (171d) experiments were conducted to test two scenarios. First, aquifer sediment microbial communities received dissolved organic matter (DOM) at low concentration and typical to groundwater in terms of composition (DOM-1x). Second, sediments received an elevated concentration of DOM originating from soil (DOM-5x). Changes in DOM composition were analyzed via NMR and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Carbon production, physiological adaptations and biodiversity of groundwater, and sediment prokaryotic communities were monitored by total cell counts, substrate use arrays, and deep amplicon sequencing. The experiments showed that groundwater microbial communities do not react very fast to the sudden availability of labile organic carbon from soil in terms of carbon degradation and biomass production. It took days to weeks for incoming DOM being efficiently degraded and pronounced cell production occurred. Once conditioned, the DOM-1x supplied sediments mineralized 294(±230) µgC L-1 sed d-1, 10-times less than the DOM-5x fed sediment communities [2.9(±1.1) mgC L-1 sed d-1]. However, the overall biomass carbon production was hardly different in the two treatments with 13.7(±4.8) µgC L-1 sed d-1 and 14.3(±3.5) µgC L-1 sed d-1, respectively, hinting at a significantly lower carbon use efficiency with higher DOM availability. However, the molecularly more diverse DOM from soil fostered a higher bacterial diversity. Taking the irregular inputs of labile DOM into account, shallow aquifers are assumed to have a low resilience. Lacking a highly active and responsive microbial community, oligotrophic aquifers are at high risk of contamination with organic chemicals.

19.
Viruses ; 12(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198110

RESUMO

How microbial populations interact influences the availability and flux of organic carbon in the ocean. Understanding how these interactions vary over broad spatial scales is therefore a fundamental aim of microbial oceanography. In this study, we assessed variations in the abundances, production, virus and grazing induced mortality of heterotrophic prokaryotes during summer along a meridional gradient in stratification in the North Atlantic Ocean. Heterotrophic prokaryote abundance and activity varied with phytoplankton biomass, while the relative distribution of prokaryotic subpopulations (ratio of high nucleic acid fluorescent (HNA) and low nucleic acid fluorescent (LNA) cells) was significantly correlated to phytoplankton mortality mode (i.e., viral lysis to grazing rate ratio). Virus-mediate morality was the primary loss process regulating the heterotrophic prokaryotic communities (average 55% of the total mortality), which may be attributed to the strong top-down regulation of the bacterivorous protozoans. Host availability, encounter rate, and HNA:LNA were important factors regulating viral dynamics. Conversely, the abundance and activity of bacterivorous protozoans were largely regulated by temperature and turbulence. The ratio of total microbial mediated mortality to total available prokaryote carbon reveals that over the latitudinal gradient the heterotrophic prokaryote community gradually moved from a near steady state system regulated by high turnover in subtropical region to net heterotrophic production in the temperate region.


Assuntos
Organismos Aquáticos/virologia , Variação Biológica da População , Processos Heterotróficos , Células Procarióticas/virologia , Microbiologia da Água , Animais , Oceano Atlântico , Fenômenos Químicos , Parasitos , Água do Mar/parasitologia , Água do Mar/virologia , Carga Viral
20.
Front Microbiol ; 10: 1913, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474972

RESUMO

Phytoplankton and heterotrophic bacteria rely on a suite of inorganic and organic macronutrients to satisfy their cellular needs. Here, we explored the effect of dissolved inorganic phosphate (PO4) and several dissolved organic molecules containing phosphorus [ATP, glucose-6-phosphate, 2-aminoethylphosphonic acid, collectively referred to as dissolved organic phosphorus (DOP)], on the activity and biomass of autotrophic and heterotrophic microbial populations in the coastal water of the southeastern Mediterranean Sea (SEMS) during summertime. To this end, surface waters were supplemented with PO4, one of the different organic molecules, or PO4 + ATP, and measured the PO4 turnover time (Tt), alkaline phosphatase activity (APA), heterotrophic bacterial production (BP), primary production (PP), and the abundance of the different microbial components. Our results show that PO4 alone does not stimulate any significant change in most of the autotrophic or heterotrophic bacterial variables tested. ATP addition (alone or with PO4) triggers the strongest increase in primary and bacterial productivity or biomass. Heterotrophic bacterial abundance and BP respond faster than phytoplankton (24 h post addition) to the various additions of DOP or PO4 + ATP, followed by a recovery of primary productivity (48 h post addition). These observations suggest that both autotrophic and heterotrophic microbial communities compete for labile organic molecules containing P, such as ATP, to satisfy their cellular needs. It also suggests that SEMS coastal water heterotrophic bacteria are likely C and P co-limited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA